Thứ sáu, 01/11/2024
IMG-LOGO
Trang chủ Lớp 11 Toán Trắc nghiệm Toán 11 Bài 2: Hai đường thẳng chéo nhau và hai đường thẳng song song (có đáp án)

Trắc nghiệm Toán 11 Bài 2: Hai đường thẳng chéo nhau và hai đường thẳng song song (có đáp án)

Trắc nghiệm Toán 11 Bài 2: Hai đường thẳng chéo nhau và hai đường thẳng song song (thông hiểu) (có đáp án)

  • 1369 lượt thi

  • 10 câu hỏi

  • 30 phút

Danh sách câu hỏi

Câu 1:

Một mặt phẳng không thể được xác định nếu ta chỉ biết:

Xem đáp án

Mặt phẳng được xác định nếu biết ba điểm không thẳng hàng nằm trong nó, hai đường thẳng cắt nhau nằm trong nó hoặc hai đường thẳng song song nằm trong nó.

Trường hợp ba điểm phân biệt thì chưa chắc đã xác định được mặt phẳng vì nếu ba điểm đó thẳng hàng thì ta không xác định được duy nhất mặt phẳng.

Đáp án cần chọn là: C


Câu 2:

Chọn mệnh đề đúng

Xem đáp án

Tính chất của hai đường thẳng song song:

- Trong không gian, qua một điểm nằm ngoài một đường thẳng có một và chỉ một đường thẳng song song với đường thẳng đó.

- Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì song song với nhau.

Từ hai tính chất trên ta thấy chỉ có đáp án A đúng.

Đáp án cần chọn là: A


Câu 3:

Cho 3 đường thẳng d1;d2;d3 không cùng thuộc một mặt phẳng và cắt nhau từng đôi. Khẳng định nào sau đây đúng?

Xem đáp án

B sai. Nếu 3 đường thẳng trùng nhau thì chúng sẽ cùng thuộc 1 mặt phẳng.

C sai. Nếu 3 đường thẳng trên chứa 3 cạnh của một tam giác khi đó sẽ tạo được 3 điểm phân biệt không thẳng hàng (là 3 đỉnh của tam giác), chúng lập thành 1 mặt phẳng xác định, 3 đường thẳng sẽ cùng thuộc 1 mặt phẳng

Đáp án cần chọn là: A


Câu 6:

Trong các mệnh đề sau, mệnh đề nào đúng?

Xem đáp án

B sai vì hai đường thẳng phân biệt không cắt nhau thì có thể chéo nhau hoặc song song.

C sai vì hai đường thẳng phân biệt không song song thì có thể chéo nhau hoặc cắt nhau.

D sai vì hai đường thẳng phân biệt lần lượt thuộc hai mặt phẳng khác nhau thì chéo nhau hoặc song song

Đáp án cần chọn là: A


Câu 8:

Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm các cạnh AB và AC. E là điểm trên cạnh CD với ED=3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là:

Xem đáp án

Tam giác ABC có MN lần lượt là trung điểm của AN,AC.

Suy ra MN là đường trung bình của tam giác ABC MN//BC.

Từ E kẻ đường thẳng D song song với BC và cắt BD tại FEF//BC.

Do đó MN//EF suy ra bốn điểm M,N,E,F đồng phẳng và MNEF là hình thang.

Vậy hình thang MNEF là thiết diện cần tìm.

Đáp án cần chọn là: D


Câu 10:

Cho hình chóp S.ABCD có đáy ABCD không phải là hình thang. Trên cạnh SC lấy điểm M. Gọi N là giao điểm của đường thẳng SD với mặt phẳng (AMB). Mệnh đề nào sau đây đúng?


Bắt đầu thi ngay

Bài thi liên quan


Có thể bạn quan tâm


Các bài thi hot trong chương