Chọn mệnh đề đúng: Với mọi nϵN* thì:
A.
B.
C.
D.
Trả lời:
Với n = 1 ta có 131 – 1 = 12 chia hết 12, ta sử dụng phương pháp quy nạp toán học để chứng minh 13n − 1 chia hết cho 12 với mọi nϵN*.
Giả sử khẳng định trên đúng đến n = k(k ≥ 1), tức là (13k − 1) chia hết 12 ta chứng minh đúng đến n = k + 1, tức là 13k+1 − 1 cũng chia hết cho 12
Ta có:
Theo giả thiết quy nạp ta có: nên:
Vậy
Đáp án cần chọn là: C
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong phương pháp quy nạp toán học, ở bước 2, nếu ta giả sử mệnh đề đúng với n = k + 1 thì ta cần chứng minh mệnh đề đúng với:
Giả sử Q là tập con của tập hợp các số nguyên dương sao cho
a) k ∈ Q
b) n∈Q ⇒ n + 1∈ Q ∀n ≥ k.
Cho dãy số (un), biết ,với . Ba số hạng đầu tiên của dãy số đó là lần lượt là những số nào dưới đây?
Cho dãy số (un), biết . Năm số hạng đầu tiên của dãy số đó lần lượt là những số nào dưới đây?
Cho dãy số (an) xác định bởi a1 = 1 và . Mệnh đề nào dưới đây là đúng?