IMG-LOGO

Câu hỏi:

07/09/2022 117

Cho ba hình cầu có bán kính lần lượt là R1,R2,R3 đôi một tiếp xúc nhau và cùng tiếp xúc với mặt phẳng (P). Các tiếp điểm của ba hình cầu với mặt phẳng (P) lập thành một tam giác có độ dài cạnh lần lượt là 2, 3, 4. Tính tổng R1+R2+R3:

A.\[\frac{{67}}{{12}}\]

B. \[\frac{{59}}{{12}}\]

C. \[\frac{{53}}{{12}}\]

D. \[\frac{{61}}{{12}}\]

Đáp án chính xác
 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Cho ba hình cầu có bán kính lần lượt là R1,R2,R3 đôi một tiếp xúc nhau và cùng tiếp xúc với mặt phẳng (P). Các tiếp điểm của ba hình cầu với mặt phẳng (P) lập thành một tam giác có độ dài cạn (ảnh 1)

Gọi I1,I2,I3 là tâm của các hình cầu, M,N,P là các tiếp điểm của các hình cầu (như hình vẽ), H,K,F là tiếp  ba hình cầu với mặt phẳng (P) (như hình vẽ).

Xét mặt phẳng (I1I2KH), có:

\[\begin{array}{*{20}{l}}{HK = \sqrt {{I_1}{I_2}^2 - {{\left( {{I_2}K - {I_1}H} \right)}^2}} \,}\\{\,\,\,\,\,\,\,\,\, = \sqrt {{{\left( {{R_1} + {R_2}} \right)}^2} - {{\left( {{R_1} - {R_2}} \right)}^2}} }\\{\,\,\,\,\,\,\,\, = \sqrt {4{R_1}{R_2}} = 2 \Rightarrow {R_1}{R_2} = 1}\end{array}\]

Tương tự, \[{R_1}{R_3} = \frac{9}{4},\,{R_2}{R_3} = 4\]

\[ \Rightarrow {R_1}{R_2}{R_3} = \sqrt {1.\frac{9}{4}.4} = 3 \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{R_1} = \frac{3}{4}}\\{{R_2} = \frac{4}{3}}\\{{R_3} = 3}\end{array}} \right.\]

Vậy \[{R_1} + {R_2} + {R_3} = \frac{3}{4} + \frac{4}{3} + 3 = \frac{{61}}{{12}}\]

Đáp án cần chọn là: D

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 200k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp đều S.ABCD có cạnh đáy bằng a, cạnh bên b. Công thức tính bán kính mặt cầu ngoại tiếp khối chóp là:

Xem đáp án » 07/09/2022 283

Câu 2:

Ba đoạn thẳng SA, SB, SC đôi một vuông góc tạo với nhau thành một tứ diện SABC với SA = a, SB = 2a, SC = 3a . Tính bán kính mặt cầu ngoại tiếp hình tứ diện đó là

Xem đáp án » 07/09/2022 169

Câu 3:

Cho mặt cầu (S1) có bán kính  R1 mặt cầu (S2) có bán kính  R2 = 2R1. Tính tỉ số diện tích của mặt cầu (S2) và (S1).

Xem đáp án » 07/09/2022 168

Câu 4:

Mặt cầu ngoại tiếp hình đa diện nếu nó:

Xem đáp án » 07/09/2022 164

Câu 5:

Một hình hộp chữ nhật có độ dài ba cạnh lần lượt là 2;2;1. Tìm bán kính R của mặt cầu ngoại tiếp hình hộp chữ nhật trên.

Xem đáp án » 07/09/2022 160

Câu 6:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a, \[SA \bot (ABCD)\;\] và SA = 2a. Tính thể tích khối cầu ngoại tiếp hình chóp S.ABCD.

Xem đáp án » 07/09/2022 155

Câu 7:

Hình nào sau đây không có mặt cầu ngoại tiếp?

Xem đáp án » 07/09/2022 153

Câu 8:

Tâm mặt cầu ngoại tiếp hình chóp tam giác đều nằm ở đâu?

Xem đáp án » 07/09/2022 151

Câu 9:

Tập hợp các điểm cách đều hai đầu mút của đoạn thẳng là:

Xem đáp án » 07/09/2022 148

Câu 10:

Số mặt cầu ngoại tiếp tứ diện là:

Xem đáp án » 07/09/2022 139

Câu 11:

Khối cầu thể tích V thì bán kính là:

Xem đáp án » 07/09/2022 139

Câu 12:

Trục đa giác đáy là đường thẳng vuông góc với mặt phẳng đáy tại:

Xem đáp án » 07/09/2022 138

Câu 13:

Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông cân đỉnh A, AB = AC = a, AA’ =\(a\sqrt 2 \). Diện tích mặt cầu ngoại tiếp tứ diện  CA′B′C′ là:

Xem đáp án » 07/09/2022 138

Câu 14:

Công thức tính bán kính mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với đáy là:

Xem đáp án » 07/09/2022 137

Câu 15:

Cho tứ diện ABCD có AB = a;AC = BC = AD = BD =\(\frac{{a\sqrt 3 }}{2}\). Gọi M,N là trung điểm của AB,CD. Góc giữa hai mặt phẳng (ABD);(ABC) là \[\alpha \] . Tính \[cos\alpha \] biết mặt cầu đường kính MN tiếp xúc với cạnh AD.

Xem đáp án » 07/09/2022 133

Câu hỏi mới nhất

Xem thêm »
Xem thêm »