Cho F(x) là một nguyên hàm của hàm số \[f\left( x \right) = x\sqrt {{x^2} - m} \]. Số giá trị của tham số m để \[F\left( {\sqrt 2 } \right) = \frac{7}{3}\] và \[F\left( {\sqrt 5 } \right) = \frac{{14}}{3}\;\] là:
A.3
B.4
C.1
D.2
Ta có:\[F\left( x \right) = \smallint f\left( x \right)dx = \smallint x\sqrt {{x^2} - m} dx\]
Đặt \[t = \sqrt {{x^2} - m} \Rightarrow {t^2} = {x^2} - m \Leftrightarrow tdt = xdx\]
\[ \Rightarrow F\left( x \right) = \smallint t.tdt = \smallint {t^2}dt = \frac{{{t^3}}}{3} + C = \frac{{{{\left( {\sqrt {{x^2} - m} } \right)}^3}}}{3} + C\]
Theo bài ra ta có:\(\left\{ {\begin{array}{*{20}{c}}{F(\sqrt 2 ) = \frac{7}{3}}\\{F(\sqrt 5 ) = \frac{{14}}{3}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{{{{\left( {\sqrt {2 - m)} } \right)}^3}}}{3} + C = \frac{7}{3}}\\{\frac{{{{\left( {\sqrt {5 - m)} } \right)}^3}}}{3} + C = \frac{{14}}{3}}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{{{{\left( {\sqrt {2 - m)} } \right)}^3}}}{3} + C = \frac{7}{3}}\\{\frac{{{{\left( {\sqrt {5 - m)} } \right)}^3}}}{3} - \frac{{{{\left( {\sqrt {2 - m)} } \right)}^3}}}{3} = \frac{7}{3}}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{{{{\left( {\sqrt {2 - m)} } \right)}^3}}}{3} + C = \frac{7}{3}}\\{{{\left( {\sqrt {5 - m)} } \right)}^3} - {{\left( {\sqrt {2 - m)} } \right)}^3} = 7}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{{{{\left( {\sqrt {2 - m)} } \right)}^3}}}{3} + C = \frac{7}{3}}\\{{{\left( {\sqrt {5 - m)} } \right)}^3} - {{\left( {\sqrt {2 - m)} } \right)}^3} - 7 = 0\left( * \right)}\end{array}} \right.\)
Xét hàm số \[f\left( m \right) = {\left( {\sqrt {5 - m} } \right)^3} - {\left( {\sqrt {2 - m} } \right)^3} - 7\] với\[m \le 2\]
Ta có
\[f'\left( m \right) = - \frac{3}{2}\sqrt {5 - m} + \frac{3}{2}\sqrt {2 - m} = \frac{3}{2}\left( {\sqrt {2 - m} - \sqrt {5 - m} } \right)\]
Vì \[2 - m < 5 - m\,\,\forall m \le 2 \Rightarrow \sqrt {2 - m} < \sqrt {5 - m} \,\,\forall m \le 2\] do đó\[f'\left( m \right) < 0\,\,\forall m \le 2\]
Suy ra hàm số f(m) nghịch biến trên\[\left( { - \infty ;2} \right]\]
Khi đó phương trình (*) có nhiều nhất 1 nghiệm, mà f(1)=0 nên m=1là nghiệm duy nhất của phương trình (*).
Vậy có 1 giá trị của mm thỏa mãn yêu cầu bài toán.
Đáp án cần chọn là: C
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Biết F(x) là một nguyên hàm của hàm số\[f(x) = \frac{x}{{\sqrt {8 - {x^2}} }}\] thoả mãn F(2)=0. Khi đó phương trình F(x)=x có nghiệm là
Cho nguyên hàm \[I = \smallint \frac{{\sqrt {{x^2} - 1} }}{{{x^3}}}\,{\rm{d}}x.\]. Nếu đổi biến số \[x = 1sint\;\] với \[t \in [\frac{\pi }{4};\frac{\pi }{2}]\] thì
Biết \[\smallint f\left( x \right){\rm{d}}x = 2x\ln \left( {3x - 1} \right) + C\] với \[x \in \left( {\frac{1}{9}; + \infty } \right)\]. Tìm khẳng định đúng trong các khẳng định sau.
Cho \[f\left( x \right) = \sin 2x\sqrt {1 - {{\cos }^2}x} \]. Nếu đặt \[\sqrt {1 - {{\cos }^2}x} = t\] thì:
Cho \[f\left( x \right) = \frac{{{x^2}}}{{\sqrt {1 - x} }}\] và \[\smallint f(x)dx = - 2\smallint {({t^2} - m)^2}dt\]với \[t = \sqrt {1 - x} \;\], giá trị của m bằng ?
Cho \[F\left( x \right) = \smallint \frac{x}{{1 + \sqrt {1 + x} }}dx\]và \[F\left( 3 \right) - F\left( 0 \right) = \frac{a}{b}\] là phân số tối giản , a>0. Tổng a+b bằng ?
Cho \[F\left( x \right) = \smallint \frac{{\ln x}}{{x\sqrt {1 - \ln x} }}dx\] , biết\[F(e) = 3\] , tìm \[F(x) = ?\]
Cho hàm số \[f\left( x \right) = \frac{1}{{{x^2} + 1}}\]. Khi đó, nếu đặt x=tant thì:
Cho nguyên hàm \[I = \smallint \frac{{{e^{2x}}}}{{\left( {{e^x} + 1} \right)\sqrt {{e^x} + 1} }}dx = a\left( {t + \frac{1}{t}} \right) + C\] với \[t = \sqrt {{e^x} + 1} \;\], giá trị a bằng?
Gọi F(x) là một nguyên hàm của hàm số \[f\left( x \right) = \frac{{{x^2}\sin x + 2x\cos x}}{{x\sin x + \cos x}}\]. Biết \[F\left( 0 \right) = 1,\] Tính giá trị biểu thức \[F\left( {\frac{\pi }{2}} \right).\]