Xét các số thực không âm a,b thỏa mãn \[2a + b \le lo{g_2}\left( {2a + b} \right) + 1\]. Giá trị nhỏ nhất của \[{a^2} + {b^2}\;\] bằng bao nhiêu?
Bước 1: Đặt\[t = 2a + b\;\left( {t \ge 0} \right)\] đưa bất phương trình về dạng\[f\left( t \right) \ge 0\]
Đặt\[t = 2a + b\;\left( {t \ge 0} \right)\] ta có giả thiết đã cho tương đương với\[f\left( t \right) = {\log _2}t - t + 1 \ge 0\]
Ta có\[f'\left( t \right) = \frac{1}{{t\ln 2}} - 1 > 0 \Leftrightarrow t < \frac{1}{{\ln 2}}\] Hàm số đồng biến trên\[\left( {0;\frac{1}{{\ln 2}}} \right)\]
Bước 2: Chứng minh\[t \ge 1\]
Ta chứng minh\[t \ge 1\]
Thật vậy, giả sử t<1 thì \[f\left( t \right) < f\left( 1 \right) = 0\] (mâu thuẫn)
Vậy \[2a + b \ge 1\]
Áp dụng BĐT Cauchy – Schwarz ta có
\[\begin{array}{*{20}{l}}{{{\left( {2a + b} \right)}^2} \le \left( {{2^2} + {1^2}} \right)\left( {{a^2} + {b^2}} \right) = 5\left( {{a^2} + {b^2}} \right)}\\{ \Rightarrow {a^2} + {b^2} \ge \frac{{{{\left( {2a + b} \right)}^2}}}{5} \ge \frac{1}{5}}\end{array}\]
Dấu bằng xảy ra\(\left\{ {\begin{array}{*{20}{c}}{2a + b = 1}\\{\frac{a}{2} = \frac{b}{1}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = \frac{2}{5}}\\{b = \frac{1}{5}}\end{array}} \right.\)
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Xét các số thực dương a và b thỏa mãn \[{\log _3}\left( {1 + ab} \right) = \frac{1}{2} + {\log _3}\left( {b - a} \right)\]. Giá trị nhỏ nhất của biểu thức \[P = \frac{{\left( {1 + {a^2}} \right)\left( {1 + {b^2}} \right)}}{{a\left( {a + b} \right)}}\] bằng:
Giải bất phương trình \[{\log _{\frac{1}{3}}}(x + {9^{500}}) > - 1000\]
Xét bất phương trình \[\log _2^22x - 2\left( {m + 1} \right){\log _2}x - 2 < 0\]. Tìm tất cả các giá trị của tham số m để bất phương trình có nghiệm thuộc khoảng \[\left( {\sqrt 2 ; + \infty } \right).\]
Tập nghiệm của bất phương trình \[\log \left( {{x^2} + 25} \right) > \log \left( {10x} \right)\] là:
Có tất cả bao nhiêu giá trị nguyên của y sao cho tương ứng với mọi y luôn tồn tại không quá 63 số nguyên x thỏa mãn điều kiện \[{\log _{2020}}\left( {x + {y^2}} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) \ge {\log _4}\left( {x - y} \right)\]
Tập nghiệm của bất phương trình \[{9^{\log _9^2x}} + {x^{{{\log }_9}x}} \le 18\]là:
Cho \[m = {\log _a}\sqrt {ab} \] với a,b>1 và \[P = \log _a^2b + 54{\log _b}a\]. Khi đó giá trị của m để P đạt giá trị nhỏ nhất là:
Tập hợp nghiệm của bất phương trình \(\)\[{\log _{\frac{1}{3}}}\left( {{x^2} - 2x + 1} \right) < {\log _{\frac{1}{3}}}\left( {x - 1} \right)\] là:
Cho hàm số y=f(x). Hàm số y=f′(x) có đồ thị như hình bên. Biết \[f\left( { - 1} \right) = 1,f( - \frac{1}{e}) = 2.\]. Tìm tất cả các giá trị của m để bất phương trình \[f(x) < ln( - x) + m\;\] nghiệm đúng với mọi \[x \in ( - 1; - \frac{1}{e}).\]
Xác định tập nghiệm S của bất phương trình \[\ln {x^2} > \ln \left( {4x - 4} \right)\]
Bất phương trình \[{\log _{\frac{4}{{25}}}}(x + 1) \ge {\log _{\frac{2}{5}}}x\] tương đương với bất phương trình nào dưới đây?
Số nguyên nhỏ nhất thỏa mãn \[{\log _2}\left( {5x - 3} \right) > 5\] là:
Tập nghiệm của bất phương trình\[{\log _2}\left( {x\sqrt {{x^2} + 2} + 4 - {x^2}} \right) + 2x + \sqrt {{x^2} + 2} \le 1\] là \(\left( { - \sqrt a ; - \sqrt b } \right)\).Khi đó abab bằng
Tập nghiệm của phương trình \[{\log _3}\left( {{{\log }_{\frac{1}{2}}}x} \right) < 1\] là