Tìm tất cả các giá trị thực của tham số m để bất phương trình \[4.{\left( {{{\log }_2}\sqrt x } \right)^2} + {\log _2}x + m \ge 0\]nghiệm đúng với mọi giá trị \[x \in \left[ {1;64} \right]\]
A.m<0.
B.\[m \le 0\;\]
C.\[m \ge 0\]
D.m>0.
Điều kiện : \[x > 0\]\[4.{\left( {{{\log }_2}\sqrt x } \right)^2} + {\log _2}x + m \ge 0 \Leftrightarrow 4.{\left( {{{\log }_2}\sqrt x } \right)^2} + 2.{\log _2}\sqrt x \ge - m\](1)
Đặt\[t = {\log _2}\sqrt x \] Khi\[x \in \left[ {1;64} \right] \Rightarrow t \in \left[ {0;3} \right]\]
Ta có bất phương trình\[4{t^2} + 2t \ge - m\]
Xét\[f(t) = 4{t^2} + 2t;f'(t) = 8t + 2 > 0,\forall t \in \left[ {0;3} \right]\]
Để (1) nghiệm đúng với\[\forall t \in \left[ {0;3} \right]\] thì\[\mathop {\min }\limits_{\left[ {0;3} \right]} f\left( t \right) \ge - m\]
\[ \Leftrightarrow f(0) \ge - m \Leftrightarrow 0 \ge - m \Leftrightarrow m \ge 0\]
Đáp án cần chọn là: C
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Xét các số thực dương a và b thỏa mãn \[{\log _3}\left( {1 + ab} \right) = \frac{1}{2} + {\log _3}\left( {b - a} \right)\]. Giá trị nhỏ nhất của biểu thức \[P = \frac{{\left( {1 + {a^2}} \right)\left( {1 + {b^2}} \right)}}{{a\left( {a + b} \right)}}\] bằng:
Giải bất phương trình \[{\log _{\frac{1}{3}}}(x + {9^{500}}) > - 1000\]
Xét bất phương trình \[\log _2^22x - 2\left( {m + 1} \right){\log _2}x - 2 < 0\]. Tìm tất cả các giá trị của tham số m để bất phương trình có nghiệm thuộc khoảng \[\left( {\sqrt 2 ; + \infty } \right).\]
Tập nghiệm của bất phương trình \[\log \left( {{x^2} + 25} \right) > \log \left( {10x} \right)\] là:
Có tất cả bao nhiêu giá trị nguyên của y sao cho tương ứng với mọi y luôn tồn tại không quá 63 số nguyên x thỏa mãn điều kiện \[{\log _{2020}}\left( {x + {y^2}} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) \ge {\log _4}\left( {x - y} \right)\]
Tập nghiệm của bất phương trình \[{9^{\log _9^2x}} + {x^{{{\log }_9}x}} \le 18\]là:
Cho \[m = {\log _a}\sqrt {ab} \] với a,b>1 và \[P = \log _a^2b + 54{\log _b}a\]. Khi đó giá trị của m để P đạt giá trị nhỏ nhất là:
Tập hợp nghiệm của bất phương trình \(\)\[{\log _{\frac{1}{3}}}\left( {{x^2} - 2x + 1} \right) < {\log _{\frac{1}{3}}}\left( {x - 1} \right)\] là:
Cho hàm số y=f(x). Hàm số y=f′(x) có đồ thị như hình bên. Biết \[f\left( { - 1} \right) = 1,f( - \frac{1}{e}) = 2.\]. Tìm tất cả các giá trị của m để bất phương trình \[f(x) < ln( - x) + m\;\] nghiệm đúng với mọi \[x \in ( - 1; - \frac{1}{e}).\]
Xác định tập nghiệm S của bất phương trình \[\ln {x^2} > \ln \left( {4x - 4} \right)\]
Bất phương trình \[{\log _{\frac{4}{{25}}}}(x + 1) \ge {\log _{\frac{2}{5}}}x\] tương đương với bất phương trình nào dưới đây?
Số nguyên nhỏ nhất thỏa mãn \[{\log _2}\left( {5x - 3} \right) > 5\] là:
Tập nghiệm của bất phương trình\[{\log _2}\left( {x\sqrt {{x^2} + 2} + 4 - {x^2}} \right) + 2x + \sqrt {{x^2} + 2} \le 1\] là \(\left( { - \sqrt a ; - \sqrt b } \right)\).Khi đó abab bằng
Tập nghiệm của phương trình \[{\log _3}\left( {{{\log }_{\frac{1}{2}}}x} \right) < 1\] là