Cho hình nón đỉnh S, tâm đáy là O, góc ở đỉnh là . Trên đường tròn đáy lấy điểm A cố định và điểm M di động. Tìm số vị trí N để diện tích SAM đạt giá trị lớn nhất.
A. Vô số
B. 3
C. 2
D. 1
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình nón có góc ở đỉnh bằng và đường cao bằng 2. Tính diện tích xung quanh của hình nón đã cho.
Cắt hình nón bởi một mặt phẳng qua trục thu được thiết diện là một tam giác vuông có diện tích bằng 8. Diện tích xung quanh của hình nón đã cho bằng:
Cho hình trụ có bán kính đáy bằng a. Cắt hình trụ bởi một mặt phẳng song song với trục của hình trụ và cách trục của hình trụ một khoảng bằng ta được thiết diện là một hình vuông. Tính thể tích khối trụ
Cho hình vuông ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của AB và CD. Khi quay hình vuông ABCD quanh MN tạo thành một hình trụ. Gọi (S) là mặt cầu có diện tích bằng diện tích toàn phần của hình trụ, ta có bán kính của mặt cầu (S) là:
Từ một tấm tôn hình chữ nhật kích thước 50 cm.240cm, người ta làm các thùng đựng nước hình trụ có chiều cao bằng 50cm, theo hai cách sau (xem hình minh họa dưới đây):
- Cách 1: Gò tấm tôn ban đầu thành mặt xung quanh của thùng.
- Cách 2: Cắt tấm tôn ban đầu thành hai tấm bằng nhau, rồi gò mỗi tấm đó thành mặt xung quanh của một thùng
Kí hiệu là thể tích của thùng gò được theo cách 1 và là tổng thể tích của hai thùng gò được theo cách 2. Tính tỉ số
Một que kem ốc quế gồm hai phần: phần kem có dạng hình cầu, phần ốc quế có dạng hình nón. Giả sử hình cầu và hình nón có bán kính bằng nhau; biết rằng nếu kem tan chảy hết thì sẽ làm đầy phần ốc quế. Biết thể tích phần kem sau khi tan chảy chỉ bằng 75% thể tích kem đóng băng ban đầu. Gọi h và r lần lượt là chiều cao và bán kính của phần ốc quế. Tính tỉ số
Cắt hình trụ bởi mặt phẳng vuông góc với mặt đáy, ta được thiết diện là hình vuông có diện tích bằng 16. Khoảng cách từ tâm đường tròn đáy của hình trụ đến mặt phẳng bằng 3. Thể tích khối trụ bằng:
Xét hình trụ T có thiết diện qua trục của hình trụ là hình vuông cạnh a. Tính diện tích toàn phần S của hình trụ.
Cho mặt cầu tâm O bán kính R. Xét mặt phẳng (P) thay đổi cắt mặt cầu theo giao tuyến là đường tròn (C). Hình nón N có đỉnh S nằm trên mặt cầu, có đáy là đường tròn (C) và có chiều cao h (h > R). Tìm h để thể tích khối nón được tạo nên bởi (N) có giá trị lớn nhất.
Cho một cái bể nước hình hộp chữ nhật có ba kích thước 2m, 3m, 2m lần lượt là chiều dài, chiều rộng, chiều cao của lòng trong đựng nước của bể. Hàng ngày, nước ở trong bể được lấy ra bởi một cái gáo nước hình trụ có chiều cao 5cm và bán kính đường tròn đáy là 4cm. Trung bình một ngày được múc ra 170 gáo nước để sử dụng (Biết mỗi lần múc là múc đầy gáo). Hỏi sau bao nhiêu ngày thì bể hết nước, biết rằng ban đầu bể đầy nước?
Thiết diện qua trục của một khối nón là một tam giác vuông cân và có cạnh góc vuông bằng . Thể tích V của khối nón bằng:
Cho hình vuông ABCD cạnh bằng 2. Gọi M là trung điểm AB. Cho tứ giác AMCD và các điểm trong của nó quay quanh trục AD ta được một khối tròn xoay. Tính thể tích khối tròn xoay đó.
Một hình nón có bán kính đáy bằng 1, chiều cao nón bằng 2. Khi đó góc ở đỉnh của nón là thỏa mãn:
Một đội xây dựng cần hoàn thiện một hệ thống cột tròn của một cửa hàng kinh doanh gồm 17 chiếc. Trước khi hoàn thiện, mỗi chiếc cột là một khối bê tông cốt thép hình lăng trụ lục giác đều có cạnh 14cm; sau khi hoàn thiện (bằng cách trát thêm vữa tổng hợp vào xung quanh) mỗi cột là một khối trụ có đường kính đáy bằng 30cm. Biết chiều cao của mỗi cột trước và sau khi hoàn thiện là 390cm. Tính lượng vữa hồn hợp cần dùng (tính theo đơn vị , làm tròn đến 1 chữ số thập phân sau dấu phẩy). Ta có kết quả
I. Sự tạo thành mặt tròn xoay.
Trong không gian cho mặt phẳng (P) chứa đường thẳng ∆ và một đường C. Khi quay mặt phẳng (P) quanh ∆ một góc 3600 thì mỗi điểm M trên đường C vạch ra một đường tròn có tâm O thuộc ∆ và nằm trên mặt phẳng vuông góc với ∆.
Như vậy, khi quay mặt phẳng (P) quanh đường thẳng ∆ thì đường C sẽ tạo thành một hình được gọi là mặt tròn xoay.
Đường C được gọi là đường sinh của mặt tròn xoay đó. Đường thẳng ∆ được gọi là trục của mặt tròn xoay đó.
II. Mặt nón tròn xoay
1. Định nghĩa.
Trong mặt phẳng (P) cho hai đường thẳng d và ∆ cắt nhau tại điểm O và tạo thành góc β với 00 < β < 900. Khi quay mặt phẳng (P) xung quanh ∆ thì đường thẳng d sinh ra một mặt tròn xoay được gọi là mặt nón tròn xoay đỉnh O.
Người thường gọi tắt mặt nón tròn xoay là mặt nón.
Đường thẳng ∆ là trục, đường thẳng d là đường sinh và góc 2β gọi là góc ở đỉnh của mặt nón đó.
2. Hình nón tròn xoay và khối nón tròn xoay.
a) Cho tam giác OIM vuông tại I. Khi quay tam giác đó xung quanh cạnh góc vuông OI thì đường gấp khúc OMI tạo thành một hình được gọi là hình nón tròn xoay, gọi tắt là hình nón.
Hình tròn tâm I sinh bởi các điểm thuộc cạnh IM khi quay quanh trục OI được gọi là mặt đáy của hình nón, điểm O được gọi là đỉnh của hình nón.
Độ dài đoạn OI gọi là chiều cao của hình nón, đó cũng chính là khoảng cách từ O đến mặt phẳng đáy. Độ dài đoạn OM gọi là độ dài đường sinh của hình nón.
Phần mặt tròn xoay được sinh ra bởi các điểm trên cạnh OM khi quay quanh OI được gọi là mặt xung quanh của hình nón đó.
b) Khối nón tròn xoay là phần không gian được giới hạn bởi một hình nón tròn xoay kể cả hình nón đó. Người ra gọi tắt khối nón tròn xoay là khối nón.
Những điểm không thuộc khối nón được gọi là những điểm ngoài của khối nón. Những điểm thuộc khối nón nhưng không thuộc hình nón ứng với khối nón ấy được gọi là những điểm trong của khối nón.
Ta gọi đỉnh, mặt đáy, đường sinh của một hình nón theo thứ tự là đỉnh, mặt đáy, đường sinh của khối nón tương ứng.
3. Diện tích xung quanh của hình nón tròn xoay.
a) Một hình chóp được gọi là nội tiếp một hình nón nếu đáy của hình chóp là đa giác nội tiếp đường tròn đáy của hình nón và đỉnh của hình chóp là đỉnh của hình nón. Khi đó, ta còn nói hình nón ngoại tiếp hình chóp.
- Định nghĩa: Diện tích xung quanh của hình nón tròn xoay là giới hạn của diện tích xung quanh của hình chóp đều nội tiếp hình nón đó khi số cạnh đáy tăng lên vô hạn.
b) Công thức tính diện tích xung quanh của hình nón.
- Diện tích xung quanh của hình nón tròn xoay bằng một nửa tích của độ dài đường tròn đáy và độ dài đường sinh.
(r là bán kính đường tròn đáy, l là độ dài đường sinh).
- Người ta gọi tổng của diện tích xung quanh và diện tích đáy là diện tích toàn phần của hình nón.
- Chú ý: Diện tích xung quanh, diện tích toàn phần của hình nón tròn xoay cũng là diện tích xung quanh , diện tích toàn phần của khối nón được giới hạn bởi hình nón đó.
- Nếu cắt mặt xung quanh của hình nón tròn xoay theo một đường sinh rồi trải dài ra trên một mặt phẳng thì ta sẽ được một hình quạt có bán kính bằng độ dài đường sinh của hình nón và một cung tròn có độ dài bằng chu vi đường tròn đáy của hình nón. Ta có thể xem diện tích hình quạt này là diện tích xung quanh của hình nón.
Ví dụ 1. Một hình nón tròn xoay có đường cao h = 20, bán kính đáy r = 25.
a) Tính diện tích xung quanh hình nón đã cho.
b) Tính diện tích toàn phần hình nón đã cho.
Lời giải:
a) Ta có:
(Pitago trong tam giác vuông SAO)
Diện tích xung quanh của hình nón:
.
b) Diện tích toàn phần của hình nón:
4. Thể tích khối nón tròn xoay.
a) Định nghĩa.
Thể tích của khối nón tròn xoay là giới hạn của thể tích khối chóp đều nội tiếp khối nón đó khi số cạnh đáy tăng lên vô hạn.
b) Công thức tính thể tích khối nón tròn xoay.
Gọi V là thể tích của khối nón tròn xoay có diện tích đáy B và chiều cao h, ta có công thức:
Như vậy, nếu bán kính đáy bằng r thì , khi đó: .
Ví dụ 2. Trong không gian, cho tam giác ABC cân tại A, BC = 2a. Gọi H là trung điểm của BC. Tính thể tích V của hình nón nhận được khi quay tam giác ABC xung quanh trục AH.
Lời giải:
Đường sinh
Bán kính đáy
đường cao
Thể tích của hình nón tạo thành .
III. Mặt trụ tròn xoay.
1. Định nghĩa
Trong mặt phẳng (P) cho hai đường thẳng ∆ và l song song với nhau, cách nhau một khoảng bằng r. Khi quay mặt phẳng (P) xung quanh ∆ thì đường thẳng l sinh ra một mặt tròn xoay được gọi là mặt trụ tròn xoay.
Người ta thường gọi tắt mặt trụ tròn xoay này là mặt trụ. Đường thẳng ∆ gọi là trục, đường thẳng l là đường sinh và r là bán kính của mặt trụ đó.
2. Hình trụ tròn xoay và khối trụ tròn xoay.
a) Xét hình chữ nhật ABCD. Khi quay hình này xung quanh đường thẳng chứa một cạnh – giả sử là AB; thì đường gấp khúc ADCB tạo thành một hình được gọi là hình trụ tròn xoay hay còn gọi tắt là hình trụ.
- Khi quay quanh AB; hai cạnh AD và BC sẽ vạch ra hai hình tròn bằng nhau gọi là hai đáy của hình trụ, bán kính của chúng gọi là bán kính của hình trụ.
Độ dài đoạn CD gọi là độ dài đường sinh của hình trụ, phần mặt tròn xoay được sinh ra bởi các điểm trên cạnh CD khi quay quanh AB gọi là mặt xung quanh của hình trụ.
Khoảng cách AB giữa hai mặt phẳng song song chứa hai đáy gọi là chiều cao của hình trụ.
b) Khối trụ tròn xoay là phần không gian được giới hạn bởi một hình trụ tròn xoay kể cả hình trụ đó. Khối trụ tròn xoay còn được gọi tắt là khối trụ.
Những điểm không thuộc khối trụ được gọi là những điểm ngoài của khối trụ.
Những điểm thuộc khối trụ nhưng không thuộc hình trụ được gọi là những điểm trong của khối trụ.
Ta gọi mặt đáy, chiều cao, đường sinh, bán kính của một hình trụ theo thú tự là mặt đáy, chiều cao, đường sinh, bán kính của khối trụ tương ứng.
3. Diện tích xung quanh của hình trụ tròn xoay.
a) Một hình lăng trụ gọi là nội tiếp một hình trụ nếu hai đáy của hình lăng trụ nội tiếp hai đường tròn đáy của hình trụ. Khi đó, ta còn nói hình trụ ngoại tiếp hình lăng trụ.
- Định nghĩa: Diện tích xung quanh của hình trụ tròn xoay là giới hạn của diện tích xung quanh của hình lăng trụ đều nội tiếp hình trụ đó khi số cạnh đáy tăng lên vô hạn.
b) Công thức tính diện tích xung quanh của hình trụ.
- Diện tích xung quanh của hình trụ tròn xoay bằng tích của độ dài đường tròn đáy và độ dài đường sinh:
( r là bán kính của hình trụ, l là độ dài đường sinh của hình trụ).
- Chú ý: Diện tích xung quanh, diện tích toàn phần của hình trụ tròn xoay cũng là diện tích xung quanh, diện tích toàn phần của khối trụ được giới hạn bởi hình trụ đó.
Nếu cắt mặt xung quanh của hình trụ theo một đường sinh, rồi trải ra trên một mặt phẳng thì ta sẽ được một hình chữ nhật có một cạnh bằng đường sinh l và một cạnh bằng chu vi của đường tròn đáy. Độ dài đường sinh l bằng chiều cao h của hình trụ. Khi đó, diện tích hình chữ nhật bằng diện tích xung quanh của hình trụ.
Ví dụ 3. Cho hình vuông ABCD cạnh 8. Gọi M; N lần lượt là trung điểm của AB
và CD. Quay hình vuông ABCD xung quanh MN.
Tính diện tích xung quanh của hình trụ tạo thành
Lời giải:
Quay hình vuông ABCD xung quanh MN ta được hình trụ như hình vẽ.
Khi đó, bán kính hình trụ:
Diện tích xung quanh của hình trụ tạo thành:
.
4. Thể tích khối trụ tròn xoay.
a) Định nghĩa: Thể tích của khối trụ tròn xoay là giới hạn của thể tích khối lăng trụ đều nội tiếp khối trụ đó khi số cạnh đáy tăng lên vô hạn.
b) Công thức tính thể tích khối trụ tròn xoay.
Gọi V là thể tích của khối trụ tròn xoay có diện tích đáy B và chiều cao h, ta có công thức: V = B.h.
Như vậy, nếu bán kính đáy bằng r thì , khi đó: .
- Ví dụ 4. Khối trụ có thiết diện qua trục là hình vuông cạnh a = 2 có thể tích là?
Lời giải:
Thiết diện qua trục của khối trụ là hình vuông ABCD như hình vẽ.
Hình vuông cạnh a = 2 nên AB = 2r = 2 .
Suy ra, bán kính của hình trụ là r = 1
Chiều cao hình trụ là h = AD = 2
Thể tích hình trụ: .