Thứ sáu, 01/11/2024
IMG-LOGO

Câu hỏi:

19/07/2024 1,052

Cho hình chữ nhật ABCD cạnh AB = 2, AD = 4. Gọi M, N là trung điểm của các cạnh AB, CD. Cho hình chữ nhật này quay quanh MN ta được hình trụ có thể tích V bằng bao nhiêu?

A. V=8π

B. V=16π

C. V=4π

Đáp án chính xác

D. V=32π

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cắt một hình trụ bởi một mặt phẳng qua trục của nó ta được thiết diện là một hình vuông có cạnh bằng 3a. Tính diện tích toàn phần của hình trụ đã cho.

Xem đáp án » 22/02/2022 10,262

Câu 2:

Cho hình nón có chu vi đường tròn đáy là 4π cm, chiều cao là 3 cm. Tìm thể tích của khối nón.

Xem đáp án » 22/02/2022 2,077

Câu 3:

Cho một khối trụ có đường kính của đáy bằng với chiều cao và có thể tích bằng 2π. Tính chiều cao h của khối trụ.

Xem đáp án » 22/02/2022 1,627

Câu 4:

Cho tam giác ABC vuông tại A có AB=6, AC=8. Quay tam giác ABC quanh trục AB ta nhận được hình nón có độ dài đường sinh bằng bao nhiêu?

Xem đáp án » 22/02/2022 1,567

Câu 5:

Cho hình nón đỉnh S, đáy là đường tròn tâm O và thiết diện qua trục là tam giác đều cạnh  . Chiều cao h của khối nón là

Xem đáp án » 22/02/2022 1,463

Câu 6:

Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6 cm. Độ dài đường chéo của thiết diện qua trục bằng

Xem đáp án » 22/02/2022 1,331

Câu 7:

Một nón lá có đường kính của vành nón là 50 cm, chiều cao bằng 25 cm. Hỏi diện tích xung quanh của cái nón lá đó bằng bao nhiêu?

Xem đáp án » 22/02/2022 1,149

Câu 8:

Cho hình nón có thiết diện qua trục là tam giác đều cạnh bằng 2a. Tính thể tích của khối nón.

Xem đáp án » 22/02/2022 1,016

Câu 9:

Một hình nón có độ dài đường sinh là 5 cm, đường cao bằng 4 cm. Thể tích V của khối nón đó là

Xem đáp án » 22/02/2022 1,009

Câu 10:

Bán kính R của khối cầu có thể tích V=36πa3 

Xem đáp án » 22/02/2022 731

Câu 11:

Cho hình nón có đỉnh S, đáy là hình tròn tâm O, bán kính R=3 cm, góc ở đỉnh của hình nón là φ=120°. Cắt hình nón bởi mặt phẳng qua đỉnh S tạo thành tam giác đều SAB , trong đó A,B thuộc đường tròn đáy. Diện tích của tam giác SAB bằng

Xem đáp án » 22/02/2022 652

Câu 12:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với độ dài đường chéo bằng a2, cạnh SA có độ dài bằng 2a và vuông góc với mặt đáy. Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD.

Xem đáp án » 22/02/2022 554

Câu 13:

Cho hình nón có bán kính đáy bằng 3 và chiều cao bằng 4. Tính diện tích xung quanh của hình nón.

Xem đáp án » 22/02/2022 473

Câu 14:

Diện tích toàn phần của một hình trụ có bán kính đáy bằng 10 cm và khoảng cách giữa hai đáy bằng 5 cm là

Xem đáp án » 22/02/2022 432

Câu 15:

Tính bán kính R mặt cầu ngoại tiếp hình lập phương có cạnh bằng 2a.

Xem đáp án » 22/02/2022 429

LÝ THUYẾT

I. Sự tạo thành mặt tròn xoay.

Trong không gian cho mặt phẳng (P) chứa đường thẳng ∆ và một đường C. Khi quay mặt phẳng (P) quanh ∆ một góc 3600 thì mỗi điểm M trên đường C vạch ra một đường tròn có tâm O thuộc ∆ và nằm trên mặt phẳng vuông góc với ∆.

Như  vậy, khi quay mặt phẳng (P) quanh đường thẳng ∆ thì đường C sẽ tạo thành một hình được gọi là mặt tròn xoay.

Đường C được gọi là đường sinh của mặt tròn xoay đó. Đường thẳng ∆ được gọi là trục của mặt tròn xoay đó.

Bài 1 : Khái niệm về mặt tròn xoay (ảnh 1)

II. Mặt nón tròn xoay

1. Định nghĩa.

Trong mặt phẳng (P) cho hai đường thẳng d và ∆ cắt nhau tại điểm O và tạo thành góc β với 00 < β < 900. Khi quay mặt phẳng (P) xung quanh ∆ thì đường thẳng d sinh ra một mặt tròn xoay được gọi là mặt nón tròn xoay đỉnh O.

Người thường gọi tắt mặt nón tròn xoay là mặt nón.

Đường thẳng ∆ là trục, đường thẳng d là đường sinh và góc 2β gọi là góc ở đỉnh của mặt nón đó.

Bài 1 : Khái niệm về mặt tròn xoay (ảnh 1)

2. Hình nón tròn xoay và khối nón tròn xoay.

a) Cho tam giác OIM vuông tại I. Khi quay tam giác đó xung quanh cạnh góc vuông OI thì đường gấp khúc OMI tạo thành một hình được gọi là hình nón tròn xoay, gọi tắt là hình nón.

Bài 1 : Khái niệm về mặt tròn xoay (ảnh 1)

Hình tròn tâm I sinh bởi các điểm thuộc cạnh IM khi quay quanh trục OI được gọi là mặt đáy của hình nón, điểm O được gọi là đỉnh của hình nón.

Độ dài đoạn OI gọi là chiều cao của hình nón, đó cũng chính là khoảng cách từ O đến mặt phẳng đáy. Độ dài đoạn OM gọi là độ dài đường sinh của hình nón.

Phần mặt tròn xoay được sinh ra bởi các điểm trên cạnh OM khi quay quanh OI được gọi là mặt xung quanh của hình nón đó.

b) Khối nón tròn xoay là phần không gian được giới hạn bởi một hình nón tròn xoay kể cả hình nón đó. Người ra gọi tắt khối nón tròn xoay là khối nón.

Những điểm không thuộc khối nón được gọi là những điểm ngoài của khối nón. Những điểm thuộc khối nón nhưng không thuộc hình nón ứng với khối nón ấy được gọi là những điểm trong của khối nón.

Ta gọi đỉnh, mặt đáy, đường sinh của một hình nón theo thứ tự là đỉnh, mặt đáy, đường sinh của khối nón tương ứng.

3. Diện tích xung quanh của hình nón tròn xoay.

a) Một hình chóp được gọi là nội tiếp một hình nón nếu đáy của hình chóp là đa giác nội tiếp đường tròn đáy của hình nón và đỉnh của hình chóp là đỉnh của hình nón. Khi đó, ta còn nói hình nón ngoại tiếp hình chóp.

- Định nghĩa: Diện tích xung quanh của hình nón tròn xoay là giới hạn của diện tích xung quanh của hình chóp đều nội tiếp hình nón đó khi số cạnh đáy tăng lên vô hạn.

b) Công thức tính diện tích xung quanh của hình nón.

- Diện tích xung quanh của hình nón tròn xoay bằng một nửa tích của độ dài đường tròn đáy và độ dài đường sinh.

Sxq=πrl  (r là bán kính đường tròn đáy, l là độ dài đường sinh).

- Người ta gọi tổng của diện tích xung quanh và diện tích đáy là diện tích toàn phần của hình nón.

- Chú ý: Diện tích xung quanh, diện tích toàn phần của hình nón tròn xoay cũng là diện tích xung quanh , diện tích toàn phần của khối nón được giới hạn bởi hình nón đó.

- Nếu cắt mặt xung quanh của hình nón tròn xoay theo một đường sinh rồi trải dài ra trên một mặt phẳng thì ta sẽ được một hình quạt có bán kính bằng độ dài đường sinh của hình nón và một cung tròn có độ dài bằng chu vi đường tròn đáy của hình nón. Ta có thể xem diện tích hình quạt này là diện tích xung quanh của hình nón.

Bài 1 : Khái niệm về mặt tròn xoay (ảnh 1)

Ví dụ 1. Một hình nón tròn xoay có đường cao h = 20, bán kính đáy r = 25.

a) Tính diện tích xung quanh hình nón đã cho.

b) Tính diện tích toàn phần hình nón đã cho.

Lời giải:

Bài 1 : Khái niệm về mặt tròn xoay (ảnh 1)

a) Ta có: SA=AO2+SO2 =202+252 =541

(Pitago trong tam giác vuông SAO)

Diện tích xung quanh của hình nón:

Sxq=π.r.l=π.OA.SA=π.25.541 =125π41.

b) Diện tích toàn phần của hình nón:

Stp=πrl+πr2=π.OA.SA+π.OA2=π.25.541 +π.252=125π(41 +5)

4. Thể tích khối nón tròn xoay.

a) Định nghĩa.

Thể tích của khối nón tròn xoay là giới hạn của thể tích khối chóp đều nội tiếp khối nón đó khi số cạnh đáy tăng lên vô hạn.

b) Công thức tính thể tích khối nón tròn xoay.

Gọi V là thể tích của khối nón tròn xoay có diện tích đáy B và chiều cao h, ta có công thức:

V=13B.h

Như vậy, nếu bán kính đáy bằng r thì B=πr2, khi đó: V=13πr2.h.

Ví dụ 2. Trong không gian, cho tam giác ABC cân tại A, AB=a10, BC = 2a. Gọi H là trung điểm của  BC. Tính thể tích V của hình nón nhận được khi quay tam giác ABC xung quanh trục AH.

Lời giải:

Bài 1 : Khái niệm về mặt tròn xoay (ảnh 1)

Đường sinh l=AB=a10

Bán kính đáy r=BC2=a

đường cao h=l2-r2 =3a

Thể tích của hình nón tạo thành V=13πr2h=πa3.

III. Mặt trụ tròn xoay.

1. Định nghĩa

Trong mặt phẳng (P) cho hai đường thẳng ∆ và l song song với nhau, cách nhau một khoảng bằng r. Khi quay mặt phẳng (P) xung quanh ∆ thì đường thẳng l sinh ra một mặt tròn xoay được gọi là mặt trụ tròn xoay.

Người ta thường gọi tắt mặt trụ tròn xoay này là mặt trụ. Đường thẳng ∆ gọi là trục, đường thẳng l là đường sinh và r là bán kính của mặt trụ đó.

Bài 1 : Khái niệm về mặt tròn xoay (ảnh 1)

2. Hình trụ tròn xoay và khối trụ tròn xoay.

a) Xét hình chữ nhật ABCD. Khi quay hình này xung quanh đường thẳng chứa một cạnh – giả sử là AB; thì đường gấp khúc ADCB tạo thành một hình được gọi là hình trụ tròn xoay hay còn gọi tắt là hình trụ.

- Khi quay quanh AB; hai cạnh AD và BC sẽ vạch ra hai hình tròn bằng nhau gọi là hai đáy của hình trụ, bán kính của chúng gọi là bán kính của hình trụ.

Độ dài đoạn CD gọi là độ dài đường sinh của hình trụ, phần mặt tròn xoay được sinh ra bởi các điểm trên cạnh CD khi quay quanh AB gọi là mặt xung quanh của hình trụ.

Khoảng cách AB giữa hai mặt phẳng song song chứa hai đáy gọi là chiều cao của hình trụ.

Bài 1 : Khái niệm về mặt tròn xoay (ảnh 1)

b) Khối trụ tròn xoay là phần không gian được giới hạn bởi một hình trụ tròn xoay kể cả hình trụ đó. Khối trụ tròn xoay còn được gọi tắt là khối trụ.

Những điểm không thuộc khối trụ được gọi là những điểm ngoài của khối trụ.

Những điểm thuộc khối trụ nhưng không thuộc hình trụ được gọi là những điểm trong của khối trụ.

Ta gọi mặt đáy, chiều cao, đường sinh, bán kính của một hình trụ theo thú tự là mặt đáy, chiều cao, đường sinh, bán kính của khối trụ tương ứng.

3. Diện tích xung quanh của hình trụ tròn xoay.

a) Một hình lăng trụ gọi là nội tiếp một hình trụ nếu hai đáy của hình lăng trụ nội tiếp hai đường tròn đáy của hình trụ. Khi đó, ta còn nói hình trụ ngoại tiếp hình lăng trụ.

- Định nghĩa: Diện tích xung quanh của hình trụ tròn xoay là giới hạn của diện tích xung quanh của hình lăng trụ đều nội tiếp hình trụ đó khi số cạnh đáy tăng lên vô hạn.

b) Công thức tính diện tích xung quanh của hình trụ.

- Diện tích xung quanh của hình trụ tròn xoay bằng tích của độ dài đường tròn đáy và độ dài đường sinh:

Sxq= 2πrl ( r là bán kính của hình trụ, l là độ dài đường sinh của hình trụ).

- Chú ý: Diện tích xung quanh, diện tích  toàn phần của hình trụ tròn xoay cũng là diện tích xung quanh, diện tích toàn phần của khối trụ được giới hạn bởi hình trụ đó.

Nếu cắt mặt xung quanh của hình trụ theo một đường sinh, rồi trải ra trên một mặt phẳng thì ta sẽ được một hình chữ nhật có một cạnh bằng đường sinh l và một cạnh bằng chu vi của đường tròn đáy. Độ dài đường sinh l bằng chiều cao h của hình trụ. Khi đó, diện tích hình chữ nhật bằng diện tích xung quanh của hình trụ.

Bài 1 : Khái niệm về mặt tròn xoay (ảnh 1)

Ví dụ 3. Cho hình vuông ABCD cạnh 8. Gọi M; N lần lượt là trung điểm của AB

và CD. Quay hình vuông ABCD xung quanh MN.

Tính diện tích xung quanh của hình trụ tạo thành

Lời giải:

Bài 1 : Khái niệm về mặt tròn xoay (ảnh 1)

Quay hình vuông ABCD xung quanh MN ta được hình trụ như hình vẽ.

Khi đó, bán kính hình trụ: r=AB2=4;h=AD=8

Diện tích xung quanh của hình trụ tạo thành:

Sxq=2πrh=64π.

4. Thể tích khối trụ tròn xoay.

a) Định nghĩa: Thể tích của khối trụ tròn xoay là giới hạn của thể tích khối lăng trụ đều nội tiếp khối trụ đó khi số cạnh đáy tăng lên vô hạn.

b) Công thức tính thể tích khối trụ tròn xoay.

Gọi V là thể tích của khối trụ tròn xoay có diện tích đáy B và chiều cao h, ta có công thức: V = B.h.

Như vậy, nếu bán kính đáy bằng r thì B=πr2, khi đó: V=πr2h.

- Ví dụ 4. Khối trụ có thiết diện qua trục là hình vuông cạnh  a = 2 có thể tích là?

Lời giải:

Bài 1 : Khái niệm về mặt tròn xoay (ảnh 1)

Thiết diện qua trục của khối trụ là hình vuông ABCD như hình vẽ.

Hình vuông cạnh a = 2 nên AB = 2r = 2 .

Suy ra, bán kính của hình trụ là r = 1

Chiều cao hình trụ là h = AD = 2

Thể tích hình trụ: V=πr2h=2π.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »