Thứ sáu, 01/11/2024
IMG-LOGO

Câu hỏi:

21/07/2024 533

Giới hạn limn2nn bằng?

A. -

B. 12

Đáp án chính xác

C. 0

D. +

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

VietJack

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giá trị lim(n32n+1) bằng

Xem đáp án » 15/08/2021 7,879

Câu 2:

Giới hạn lim2n2n+42n4n2+1 bằng?

Xem đáp án » 15/08/2021 5,263

Câu 3:

Dãy số nào sau đây có giới hạn 0 ?

Xem đáp án » 15/08/2021 3,153

Câu 4:

Cho un=3n+5n5n. Khi đó limun bằng?

Xem đáp án » 15/08/2021 2,661

Câu 5:

Chọn kết luận không đúng:

Xem đáp án » 15/08/2021 2,622

Câu 6:

Biết limun=+. Chọn mệnh đề đúng trong các mệnh đề sau.

Xem đáp án » 15/08/2021 2,015

Câu 7:

Cho un=14n5n. Khi đó lim un bằng?

Xem đáp án » 15/08/2021 1,910

Câu 8:

Cho un=n23n14n3. Khi đó limun bằng?

Xem đáp án » 15/08/2021 1,757

Câu 9:

Biết limun=3. Chọn mệnh đề đúng trong các mệnh đề sau.

Xem đáp án » 15/08/2021 1,569

Câu 10:

Cho các dãy số un, vnlimun=53, limvn=23 . Chọn đáp án đúng:

Xem đáp án » 15/08/2021 1,293

Câu 11:

Cho dãy số un có giới hạn L=12. Chọn kết luận đúng:

Xem đáp án » 15/08/2021 911

Câu 12:

Cho hai dãy số un , vn với un=1n, vn=1nn. Biết  (1)nn1n. Chọn kết luận không đúng:

Xem đáp án » 15/08/2021 460

Câu 13:

Giá trị lim(5nn2+1) bằng

Xem đáp án » 15/08/2021 364

Câu 14:

Cho cấp số nhân un=12nn1. Khi đó

Xem đáp án » 15/08/2021 313

LÝ THUYẾT

I. GIỚI HẠN HỮU HẠN CỦA DÃY SỐ

1. Định nghĩa

Định nghĩa 1

Ta nói dãy số (un) có giới hạn là 0 khi n dần tới dương vô cực, nếu |un| có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi.

Kí hiệu: limn+un=0  hay un → 0 khi n → +∞.

Ví dụ 1. Cho dãy số (un) với un=1nn2. Tìm giới hạn dãy số

Giải

Xét un=1n2=1n2

Với n > 10 n2 > 102 = 100

un=1n2=1n2<1100

limnun=0.

Định nghĩa 2

Ta nói dãy số (vn) có giới hạn là a (hay vn dần tới a) khi n → +∞ nếu limn+vna=0

Kí hiệu:  limn+vn=a hay vn → a khi n → +∞.

Ví dụ 2. Cho dãy số vn=n13+2n. Chứng minh rằng limnvn=12.

Giải

Ta có limnvn+12=limnn13+2n+12=limn=123+2n=0

Do đó: limnvn=12.

2. Một vài giới hạn đặc biệt

a) limn+1n=0,limn+1nk=0 với k nguyên dương;

b)  limn+qn nếu |q| < 1;

c) Nếu un = c (c là hằng số) thì  limn+un=limn+c=c.

Chú ý: Từ nay về sau thay cho  limn+un=a ta viết tắt là lim un = a.

II. ĐỊNH LÝ VỀ GIỚI HẠN HỮU HẠN

Định lí 1

a) Nếu lim un = a và lim vn = b thì

lim (un + vn) = a + b

lim (un – vn) = a – b

lim (un.vn) = a.b

limunvn=ab (nếu b0)

Nếu  un0với mọi n và limun­ = a thì:

limun=a  và a0.

Ví dụ 3. Tính limn22n+1

Giải

limn22n+1=limn3+n22n+1=lim1+1n2n31n2+1n3=lim1+1n2n3:lim1n2+1n3

=lim1+lim1nlim2n3:lim1n2+lim1n3

=+

Ví dụ 4. Tìm lim2+9n21+4n

Giải

lim2+9n21+4n=limn22n2+9n1n+4=limn2n2+9n1n+4=lim2n2+91n+4=34.

III. TỔNG CỦA CẤP SỐ NHÂN LÙI VÔ HẠN

Cấp số nhân vô hạn (un) có công bội q, với |q| < 1 được gọi là cấp số nhân lùi vô hạn.

Tổng của cấp số nhân lùi vô hạn:

S=u1+u2+u3+...+un+...=u11qq<1

Ví dụ 5. Tính tổng của cấp số nhân lùi vô hạn 1;12;14;18;...;12n1;...

Giải

Ta có dãy số1;12;14;18;...;12n1;...  là một số cấp số nhân lùi vô hạn với công bội q=12.

Khi đó ta có: Sn=lim1+12+14+18+...+12n1+...=1112=23.

IV. GIỚI HẠN VÔ CỰC

1. Định nghĩa

- Ta nói dãy số (un) có giới hạn là +∞ khi n → +∞, nếu un có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Kí hiệu: lim un = +∞ hay un → +∞ khi n → +∞.

- Dãy số (un) có giới hạn là –∞ khi n → +∞, nếu lim (–un) = +∞.

Kí hiệu: lim un = –∞ hay un → –∞ khi n → +∞.

Nhận xét: un = +∞ ⇔ lim(–un) = –∞

2. Một vài giới hạn đặc biệt

Ta thừa nhận các kết quả sau

a) lim nk = +∞ với k nguyên dương;

b) lim qn = +∞ nếu q > 1.

3. Định lí 2

a) Nếu lim un = a và lim vn = ±∞ thì limunvn=0

b) Nếu lim un = a > 0, lim vn = 0 và vn > 0, ∀ n > 0 thì limunvn=+

c) Nếu lim un = +∞ và lim vn = a > 0 thì limun.vn=+.

Ví dụ 6. Tính lim2n+1n.

Giải

lim2n+1n=lim2n+lim1n

lim2n=+ và lim1n=0

lim2n+1n=+

Câu hỏi mới nhất

Xem thêm »
Xem thêm »